问题标题:
(1)如图1,矩形ABCD中,点M在BC上,连接AM,作∠AMN=∠AMB,点N在直线AD上,MN交CD于点E,请找出图1中的一个等腰三角形,并证明结论.(2)如图2,矩形ABCD中,AB=3,BC=2,点M为BC中点,连接AM
问题描述:
(1)如图1,矩形ABCD中,点M在BC上,连接AM,作∠AMN=∠AMB,点N在直线AD上,MN交CD于点E,请找出图1中的一个等腰三角形,并证明结论.
(2)如图2,矩形ABCD中,AB=3,BC=2,点M为BC中点,连接AM,作∠AME=∠AMB,ME交CD于点E,求CE的长.
黄波回答:
(1)△AMN是等腰三角形,
证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠NAM=∠BMA,又∠AMN=∠AMB,
∴∠AMN=∠NAM,
∴AN=MN,即△AMN是等腰三角形;
(2)如图,作NH⊥AM于H,
∵AN=MN,NH⊥AM,
∴AH=12
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日