问题标题:
【用数学归纳法证明1+2+3+…+n2=n4+n22,则当n=k+1时,左端应在n=k的基础上加上______.】
问题描述:

用数学归纳法证明1+2+3+…+n2=n4+n22,则当n=k+1时,左端应在n=k的基础上加上______.

刘珊中回答:
  当n=k时,等式左端=1+2+…+k2,   当n=k+1时,等式左端=1+2+…+k2+(k2+1)+(k2+2)+(k2+3)+…+(k+1)2,增加了2k+1项.即(k2+1)+(k2+2)+(k2+3)+…+(k+1)2   故答案为:(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《【用数学归纳法证明1+2+3+…+n2=n4+n22,则当n=k+1时,左端应在n=k的基础上加上______.】|高中数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元