问题标题:
已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)-f(y)|<12|x-y|.若对所有x,y∈[0,1],|f(x)-f(y)|<m恒成立,则m的最小值为()
问题描述:

已知定义在[0,1]上的函数f(x)满足:

①f(0)=f(1)=0;

②对所有x,y∈[0,1],且x≠y,有|f(x)-f(y)|<12|x-y|.

若对所有x,y∈[0,1],|f(x)-f(y)|<m恒成立,则m的最小值为()

A.12

B.14

C.12π

D.18

汤学彦回答:
  依题意,定义在[0,1]上的函数y=f(x)的斜率|k|<12
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《已知定义在[0,1]上的函数f(x)满足:①f(0)=f(1)=0;②对所有x,y∈[0,1],且x≠y,有|f(x)-f(y)|<12|x-y|.若对所有x,y∈[0,1],|f(x)-f(y)|<m恒成立,则m的最小值为()|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元