问题标题:
已知,acosx+bsinx+c=0(a不等于0)在区间(90度,180度)内有两个相异的实数根m,n求sin(m+n)的值.
问题描述:

已知,acosx+bsinx+c=0(a不等于0)在区间(90度,180度)内有两个相异的实数根m,n求sin(m+n)的值.

李云梅回答:
  以x=m、x=n代入,得:acosm+bsinm+c=0、acosn+bsinn+c=0.两式相减,得:a[cosm-cosn]+b[sinm-sinn]=0,a(-2)sin[(m+n)/2]sin[(m-n)/2]+2bcos[(m+n)/2]sin[(m-n)/2]=0,tan[(m+n)/2]=(b/a),万能公式
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《已知,acosx+bsinx+c=0(a不等于0)在区间(90度,180度)内有两个相异的实数根m,n求sin(m+n)的值.|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元