问题标题:
微积分定积分函数F(x)在[a,b]上可导,则其导函数f(x)在[a,b]上是否一定可积?对秋前弦说:F(x)与f(x)不是一会事。对‘693573731’说:我可以根据达布定理证明若导函数f(x)在闭区间[a,b]上存在间断
问题描述:
微积分定积分
函数F(x)在[a,b]上可导,则其导函数f(x)在[a,b]上是否一定可积?
对秋前弦说:F(x)与f(x)不是一会事。
对‘693573731’说:我可以根据达布定理证明若导函数f(x)在闭区间[a,b]上存在间断点,则必为第二类尖端点,且非无穷间断点(若不存在间断点,即f(x)连续,此时可积是没问题的)。但如果看‘hogwarts_jc’所给的例子,导函数f(x)在闭区间[a,b]上无界怎么办?此时并不满足你所给三种情况中的任何一个额,所以你这好想有漏洞。
林学华回答:
如果楼主指的是定积分而不是广义积分的话,那么不一定可积,因为f(x)可能根本就无界.例如取F(x)=x^2*sin(1/x^2),易见F(x)在[0,1]上可微,但f(x)=2xsin(1/x^2)-2/x*cos(1/x^2)在0附近无界,显然定积分不存在.
至于狭积分存不存在,没考虑清楚,不敢妄言,不过感觉是存在的~
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日